Discussion
The main result of the present study was that a 6-week soy-based protein supplementation promotes an increased aerobic energy provision during endurance exercise of moderate intensity. It was shown that the concentration of lactic acid at both aerobic and anaerobic threshold and also the total lactate production during the treadmill test to exhaustion was lower following the soy protein supplementation.
With respect to anaerobic energy supply, a reduced ammonia and uric acid production was found following the 11.5 km running test. Increased concentrations of ammonia and uric acid indicate adenine nucleotide breakdown and the utilization of the anaerobic purine nucleotide cycle (3, 5). It has been shown previously that endurance exercise leads to an increased utilization of some free amino acids for energy provision (15). As the exercise-induced changes in urea were more pronounced in the verum group, it can be assumed that there was an additional energy supply from protein in this group. Finally, the significant differences in the post-exercise regulation of triglyceride and insulin metabolism suggest an improved use of fatty acids for energy metabolism (1, 18, 32) induced by the regular intake of the soy-based dietary supplement. This effect could only be shown in the verum group, whereas in the control group an increased hepatic synthesis of triglycerides by the unutilized free fatty acids has to be assumed (19). This observation is in accordance with the results of studies investigating molecular effects of soy protein in rats (27)(24).
The results are also consistent with experimental data of a recently published trial in which the specific effects of this soy protein supplement on postprandial fuel selection and appetite regulation were investigated (21). The glycaemic and insulinaemic responses were considerably higher after a standardized breakfast with a high GI than following the soy protein supplement. In addition, the postprandial decrease in fat oxidation was significantly less pronounced after intake of the supplement; this effect was also detectable after lunch as a "second-meal" effect. It has been demonstrated by several groups that a lower GI of a pre-exercise meal was associated with a higher fat oxidation both before and during exercise (9, 35, 36, 38, 42). This effect can mainly be attributed to lower pre-exercise insulin concentrations which will lead to enhanced peripheral lipolysis, increased plasma FFA and increased β-oxidation in skeletal muscles. On the one hand, this effect could be used to improve training gain in endurance type sports, on the other hand, it has a glycogen sparing effect, thereby minimizing the ergolytic effects of carbohydrate depletion. Glycogen sparing means that an increased fat oxidation during intense, prolonged endurance exercise reduces the relative proportion of carbohydrate oxidation. The lower rate of carbohydrate oxidation will preserve the intramuscular and intrahepatic glycogen stores. These stores can be used in the later stages of exercise and prevent premature fatigue (35, 42).
Considerable research has been done during the last decades to elucidate the effect of macronutrient composition on physical performance, particularly endurance performance (25). For endurance athletes, a high-carbohydrate diet (6, 16) has been recommended by sports nutritionists. The diet should contain 6 to 8 grams of carbohydrates per kilogram of body mass (31). However, it should be mentioned that this amount of carbohydrates can easily reach up to 2,400 kilocalories of carbohydrate per day and may eventually interfere with an adequate intake of protein (4, 17, 23, 37). In addition, dietary carbohydrates, particularly with a high glycaemic load, generate high blood glucose and insulin levels which could impair fat metabolism (2). A higher intake of protein may be a feasible way to burn more fat (10, 21). Furthermore, there is experimental evidence that soy protein influences cellular energy metabolism by molecular mechanisms. Soy protein improves insulin resistance and lipid levels by activating peroxisome-proliferator activated receptors (PPARs) (39). PPARs are known as nuclear receptors which control metabolic processes, particularly affecting energy metabolism, by regulating the expression of genes involved in glucose homeostasis, lipid metabolism, and fatty acid oxidation (26, 27, 33, 43). It has been shown (26) that consumption of isoflavone-rich soy protein improves glucose tolerance, insulin resistance and hepatic triglyceride concentrations in rats. In addition, these investigators showed that isoflavone-rich soy extracts increased the gene expression of PPARs in cell culture studies, suggesting that the beneficial effects of soy protein on glucose and lipid metabolism may be mediated by PPAR activation.
More recently, it was also demonstrated (27) that soy protein feeding in rats increased the activity and mRNA levels of several skeletal muscle enzymes involved in fatty acid oxidation, including carnitine palmitoyltransferase (CPT1) activity and beta-hydroxyacyl-CoA dehydrogenase (HAD), acyl-CoA oxidase, and medium-chain acyl-CoA dehydrogenase. Moreover, PPAR gamma coactivator-1 (PGC1)- alpha and PPAR-alpha mRNA levels were also found to be elevated, suggesting that soy protein intake stimulates skeletal muscle fatty acid oxidation by activating PPAR pathways leading to a reduced accumulation of body fat (24). It may be assumed that soy protein works in the same or a similar manner in human organisms, however, comparable results from experimental studies in humans are still lacking. Therefore, further research is needed to confirm this assumption.
In the present study, it was further investigated if the intake of the supplement could also prevent muscle soreness and exercise-induced inflammatory stress. It has been assumed that an improvement in these parameters may enhance regeneration and help to achieve a stable fitness level (29)(40). However, there is no consensus whether an additional protein intake could prevent or reduce post-exercise muscular or systemic stress (4, 28, 34).
Apart from an increased post-exercise glycogen resynthesis, many other mechanisms have been discussed which could improve the immune response during and following exercise (28). These include an increased central drive, a blunting of exercise-induced muscle damage (8), and a modification in the pattern of exercise-related cytokine production. However, in our study we found no indices to assume such mechanisms. It could be possible that the study protocol (moderately endurance-trained subjects, 6 weeks of supplementation, duration of stress test 60 minutes) was not suitable to induce respective changes. Either the supplementation period was too short or the stress test was not appropriate. In addition, it has to be critically remarked that many studies so far have failed to demonstrate improved stress tolerance or altered immune function by measuring stress markers in the blood.
The intake of the protein-rich food supplement was not associated with changes in body composition within the 6-week period. The combined effects of protein supplementation and physical training on body composition and particularly muscle mass in healthy and trained subjects have been equivocal. It can be assumed that in the present design, the length of supplementation and training volume (frequency x intensity x duration) were not sufficient to induce alterations in body composition.
In conclusion, the results support the hypothesis that the soy-based food supplement promotes aerobic energy supply during moderate endurance training. In addition, in these healthy and normal-weight sports students, the intervention led to an increased endurance performance. It can be assumed that the supplement significantly influences the supply of fat as a source of energy during exercise. The group-specific behaviour in the post-exercise triglyceride and insulin kinetics, which were evident in the regeneration phase, suggests an altered mitochondrial metabolism of the muscle cells and an improved use of fatty acids for energy metabolism following additional soy protein intake.