References
1. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–432. doi: 10.1038/372425a0. [PubMed] [CrossRef] [Google Scholar]
2. Niskanen L.K., Haffner S., Karhunen L.J., Turpeinen A.K., Miettinen H., Uusitupa M.I. Serum leptin in obesity is related to gender and body fat topography but does not predict successful weight loss. Eur. J. Endocrinol. 1997;137:61–67. doi: 10.1530/eje.0.1370061. [PubMed] [CrossRef] [Google Scholar]
3. Campfield L.A., Smith F.J., Guisez Y., Devos R., Burn P. Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269:546–549. doi: 10.1126/science.7624778. [PubMed] [CrossRef] [Google Scholar]
4. Halaas J.L., Gajiwala K.S., Maffei M., Cohen S.L., Chait B.T., Rabinowitz D., Lallone R.L., Burley S.K., Friedman J.M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269:543–546. doi: 10.1126/science.7624777. [PubMed] [CrossRef] [Google Scholar]
5. Elias C.F., Aschkenasi C., Lee C., Kelly J., Ahima R.S., Bjorbaek C., Flier J.S., Saper C.B., Elmquist J.K. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron. 1999;23:775–786. doi: 10.1016/S0896-6273(01)80035-0. [PubMed] [CrossRef] [Google Scholar]
6. Knight Z.A., Hannan K.S., Greenberg M.L., Friedman J.M. Hyperleptinemia is required for the development of leptin resistance. PLoS ONE. 2010;5:e11376. doi: 10.1371/journal.pone.0011376. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
7. Amitani M., Asakawa A., Amitani H., Inui A. The role of leptin in the control of insulin-glucose axis. Front. Neurosci. 2013;7:51. doi: 10.3389/fnins.2013.00051. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Tuomilehto J., Lindstrom J., Eriksson J.G., Valle T.T., Hamalainen H., Ilanne-Parikka P., Keinanen-Kiukaanniemi S., Laakso M., Louheranta A., Rastas M., et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001;344:1343–1350. doi: 10.1056/NEJM200105033441801. [PubMed] [CrossRef] [Google Scholar]
9. Knowler W.C., Barrett-Connor E., Fowler S.E., Hamman R.F., Lachin J.M., Walker E.A., Nathan D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002;346:393–403. [PMC free article] [PubMed] [Google Scholar]
10. Ramachandran A., Snehalatha C., Mary S., Mukesh B., Bhaskar A.D., Vijay V. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1) Diabetologia. 2006;49:289–297. doi: 10.1007/s00125-005-0097-z. [PubMed] [CrossRef] [Google Scholar]
11. Lim E.L., Hollingsworth K.G., Aribisala B.S., Chen M.J., Mathers J.C., Taylor R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54:2506–2514. doi: 10.1007/s00125-011-2204-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Lean M.E.J., Leslie W.S., Barnes A.C., Brosnahan N., Thom G., McCombie L., Peters C., Zhyzhneuskaya S., Al-Mrabeh A., Hollingsworth K.G., et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7:344–355. doi: 10.1016/S2213-8587(19)30068-3. [PubMed] [CrossRef] [Google Scholar]
13. Taheri S., Zaghloul H., Chagoury O., Elhadad S., Ahmed S.H., El K.N., Amona R.A., El N.K., Suleiman N., Alnaama A., et al. Effect of intensive lifestyle intervention on bodyweight and glycaemia in early type 2 diabetes (DIADEM-I): An open-label, parallel-group, randomised controlled trial. Lancet Diabetes Endocrinol. 2020;8:477–489. doi: 10.1016/S2213-8587(20)30117-0. [PubMed] [CrossRef] [Google Scholar]
14. Yanovski S.Z., Yanovski J.A. Obesity. N. Engl. J. Med. 2002;346:591–602. doi: 10.1056/NEJMra012586. [PubMed] [CrossRef] [Google Scholar]
15. Halle M., Röhling M., Banzer W., Braumann K.M., Kempf K., McCarthy D., Schaller N., Predel H.G., Scholze J., Fuhrer-Sakel D., et al. Meal replacement by formula diet reduces weight more than a lifestyle intervention alone in patients with overweight or obesity and accompanied cardiovascular risk factors-the ACOORH trial. Eur. J. Clin. Nutr. 2021;75:661–669. doi: 10.1038/s41430-020-00783-4. [PubMed] [CrossRef] [Google Scholar]
16. Röhling M., Kempf K., Banzer W., Berg A., Braumann K.M., Tan S., Halle M., McCarthy D., Pinget M., Predel H.G., et al. Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate and Energy Deficit Formula Diet to Lifestyle Intervention-A 12-Month Subanalysis of the ACOORH Trial. Nutrients. 2020;12:2022. doi: 10.3390/nu12072022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
17. Röhling M., Stensitzky A., Oliveira C.L.P., Beck A., Braumann K.M., Halle M., Fuhrer-Sakel D., Kempf K., McCarthy D., Predel H.G., et al. Effects of a Protein-Rich, Low-Glycaemic Meal Replacement on Changes in Dietary Intake and Body Weight Following a Weight-Management Intervention-The ACOORH Trial. Nutrients. 2021;13:376. doi: 10.3390/nu13020376. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
18. Kempf K., Röhling M., Banzer W., Braumann K.M., Halle M., McCarthy D., Predel H.G., Schenkenberger I., Tan S., Toplak H., et al. High-Protein, Low-Glycaemic Meal Replacement Decreases Fasting Insulin and Inflammation Markers-A 12-Month Subanalysis of the ACOORH Trial. Nutrients. 2021;13:1433. doi: 10.3390/nu13051433. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19. Röhling M., Kempf K., Banzer W., Braumann K.M., Fuhrer-Sakel D., Halle M., McCarthy D., Martin S., Scholze J., Toplak H., et al. A High-Protein and Low-Glycemic Formula Diet Improves Blood Pressure and Other Hemodynamic Parameters in High-Risk Individuals. Nutrients. 2022;14:1443. doi: 10.3390/nu14071443. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20. Uzum A.K., Yucel B., Omer B., Issever H., Ozbey N.C. Leptin concentration indexed to fat mass is increased in untreated anorexia nervosa (AN) patients. Clin. Endocrinol. 2009;71:33–39. doi: 10.1111/j.1365-2265.2008.03423.x. [PubMed] [CrossRef] [Google Scholar]
21. Wadden T.A., Considine R.V., Foster G.D., Anderson D.A., Sarwer D.B., Caro J.S. Short- and long-term changes in serum leptin dieting obese women: Effects of caloric restriction and weight loss. J. Clin. Endocrinol. Metab. 1998;83:214–218. doi: 10.1210/jc.83.1.214. [PubMed] [CrossRef] [Google Scholar]
22. Fujita Y., Kouda K., Ohara K., Nakamura H., Iki M. Leptin mediates the relationship between fat mass and blood pressure: The Hamamatsu School-based health study. Medicine. 2019;98:e14934. doi: 10.1097/MD.0000000000014934. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
23. Considine R.V., Sinha M.K., Heiman M.L., Kriauciunas A., Stephens T.W., Nyce M.R., Ohannesian J.P., Marco C.C., McKee L.J., Bauer T.L., et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996;334:292–295. doi: 10.1056/NEJM199602013340503. [PubMed] [CrossRef] [Google Scholar]
24. Elmquist J.K., Elias C.F., Saper C.B. From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron. 1999;22:221–232. doi: 10.1016/S0896-6273(00)81084-3. [PubMed] [CrossRef] [Google Scholar]
25. Heymsfield S.B., Greenberg A.S., Fujioka K., Dixon R.M., Kushner R., Hunt T., Lubina J.A., Patane J., Self B., Hunt P., et al. Recombinant leptin for weight loss in obese and lean adults: A randomized, controlled, dose-escalation trial. JAMA. 1999;282:1568–1575. doi: 10.1001/jama.282.16.1568. [PubMed] [CrossRef] [Google Scholar]
26. Zelissen P.M., Stenlof K., Lean M.E., Fogteloo J., Keulen E.T., Wilding J., Finer N., Rossner S., Lawrence E., Fletcher C., et al. Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: A randomized, placebo-controlled trial. Diabetes Obes. Metab. 2005;7:755–761. doi: 10.1111/j.1463-1326.2005.00468.x. [PubMed] [CrossRef] [Google Scholar]
27. Chaldakov G.N., Fiore M., Stankulov I.S., Hristova M., Antonelli A., Manni L., Ghenev P.I., Angelucci F., Aloe L. NGF, BDNF, leptin, and mast cells in human coronary atherosclerosis and metabolic syndrome. Arch. Physiol. Biochem. 2001;109:357–360. doi: 10.1076/apab.109.4.357.4249. [PubMed] [CrossRef] [Google Scholar]
28. Bjorbak C., Lavery H.J., Bates S.H., Olson R.K., Davis S.M., Flier J.S., Myers M.G., Jr. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J. Biol. Chem. 2000;275:40649–40657. doi: 10.1074/jbc.M007577200. [PubMed] [CrossRef] [Google Scholar]
29. Dirlewanger M., di Vetta V., Guenat E., Battilana P., Seematter G., Schneiter P., Jequier E., Tappy L. Effects of short-term carbohydrate or fat overfeeding on energy expenditure and plasma leptin concentrations in healthy female subjects. Int. J. Obes. Relat. Metab. Disord. 2000;24:1413–1418. doi: 10.1038/sj.ijo.0801395. [PubMed] [CrossRef] [Google Scholar]
30. Zhou Y., Yu X., Chen H., Sjoberg S., Roux J., Zhang L., Ivoulsou A.H., Bensaid F., Liu C.L., Liu J., et al. Leptin Deficiency Shifts Mast Cells toward Anti-Inflammatory Actions and Protects Mice from Obesity and Diabetes by Polarizing M2 Macrophages. Cell Metab. 2015;22:1045–1058. doi: 10.1016/j.cmet.2015.09.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
31. Burguera B., Couce M.E., Curran G.L., Jensen M.D., Lloyd R.V., Cleary M.P., Poduslo J.F. Obesity is associated with a decreased leptin transport across the blood-brain barrier in rats. Diabetes. 2000;49:1219–1223. doi: 10.2337/diabetes.49.7.1219. [PubMed] [CrossRef] [Google Scholar]
32. Zhao S., Zhu Y., Schultz R.D., Li N., He Z., Zhang Z., Caron A., Zhu Q., Sun K., Xiong W., et al. Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metab. 2019;30:706–719. doi: 10.1016/j.cmet.2019.08.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
33. Crujeiras A.B., Goyenechea E., Abete I., Lage M., Carreira M.C., Martinez J.A., Casanueva F.F. Weight regain after a diet-induced loss is predicted by higher baseline leptin and lower ghrelin plasma levels. J. Clin. Endocrinol. Metab. 2010;95:5037–5044. doi: 10.1210/jc.2009-2566. [PubMed] [CrossRef] [Google Scholar]
34. Torgerson J.S., Carlsson B., Stenlof K., Carlsson L.M., Bringman E., Sjostrom L. A low serum leptin level at baseline and a large early decline in leptin predict a large 1-year weight reduction in energy-restricted obese humans. J. Clin. Endocrinol. Metab. 1999;84:4197–4203. [PubMed] [Google Scholar]
35. de Luis D.A., Izaola O., Primo D., Ovalle H.F., Lopez J.J., Gomez E., Ortola A., Aller R. Biochemical, Anthropometric and Lifestyle Factors Related with Weight Maintenance after Weight Loss Secondary to a Hypocaloric Mediterranean Diet. Ann. Nutr. Metab. 2017;71:217–223. doi: 10.1159/000484446. [PubMed] [CrossRef] [Google Scholar]
36. Seufert J., Kieffer T.J., Leech C.A., Holz G.G., Moritz W., Ricordi C., Habener J.F. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: Implications for the development of adipogenic diabetes mellitus. J. Clin. Endocrinol. Metab. 1999;84:670–676. doi: 10.1210/jc.84.2.670. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37. Seufert J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes. 2004;53((Suppl. 1)):S152–S158. doi: 10.2337/diabetes.53.2007.S152. [PubMed] [CrossRef] [Google Scholar]
38. Yip I., Go V.L., Hershman J.M., Wang H.J., Elashoff R., DeShields S., Liu Y., Heber D. Insulin-leptin-visceral fat relation during weight loss. Pancreas. 2001;23:197–203. doi: 10.1097/00006676-200108000-00010. [PubMed] [CrossRef] [Google Scholar]
39. de Luis D.A., Aller R., Izaola O., Gonzalez S.M., Conde R., de la Fuente B., Primo D. Effect of Lys656Asn Polymorphism of Leptin Receptor Gene on Cardiovascular Risk Factors and Serum Adipokine Levels after a High Polyunsaturated Fat Diet in Obese Patients. J. Clin. Lab. Anal. 2015;29:432–436. doi: 10.1002/jcla.21790. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
40. Primo D., Izaola O., De Luis D. Leptin gene polymorphism (rs 7799039; G2548A) is associated with changes in lipid profile during a partial meal-replacement hypocaloric diet. J. Hum. Nutr. Diet. 2021;34:456–463. doi: 10.1111/jhn.12809. [PubMed] [CrossRef] [Google Scholar]
41. Xu H., Barnes G.T., Yang Q., Tan G., Yang D., Chou C.J., Sole J., Nichols A., Ross J.S., Tartaglia L.A., et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003;112:1821–1830. doi: 10.1172/JCI200319451. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Weisberg S.P., McCann D., Desai M., Rosenbaum M., Leibel R.L., Ferrante A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003;112:1796–1808. doi: 10.1172/JCI200319246. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
43. Kolb H., Mandrup-Poulsen T. An immune origin of type 2 diabetes? Diabetologia. 2005;48:1038–1050. doi: 10.1007/s00125-005-1764-9. [PubMed] [CrossRef] [Google Scholar]
44. Grassmann S., Wirsching J., Eichelmann F., Aleksandrova K. Association Between Peripheral Adipokines and Inflammation Markers: A Systematic Review and Meta-Analysis. Obesity. 2017;25:1776–1785. doi: 10.1002/oby.21945. [PubMed] [CrossRef] [Google Scholar]
45. Jequier E. Leptin signaling, adiposity, and energy balance. Ann. N. Y. Acad. Sci. 2002;967:379–388. doi: 10.1111/j.1749-6632.2002.tb04293.x. [PubMed] [CrossRef] [Google Scholar]
46. Samtiya M., Aluko R.E., Dhewa T., Moreno-Rojas J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods. 2021;10:839. doi: 10.3390/foods10040839. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Read more